Roll No.	•••••
----------	-------

E - 3904

B. C. A. (Part II) EXAMINATION, 2021

(Old Course)

Paper First

NUMERICAL ANALYSIS

(201)

Time: Three Hours [Maximum Marks: 50

Note: All questions are compulsory. Attempt any *two* parts from each question. All questions carry equal marks. Simple/Scientific calculator is allowed.

Unit—I

- 1. (a) Using bisection method, find real roots of $x^3 x 1 = 0.$
 - (b) Find the root of $x^2 5x + 2 = 0$ correct to five decimal places, by Newton-Raphson method.
 - (c) Solve the equation $2x^3 + x^2 7x 6 = 0$ when the difference of two roots is 3.

[2]

Unit—II

2. (a) Apply Gauss-Jardon method to find the inverse of the matrix :

$$A = \begin{bmatrix} 2 & 6 & 6 \\ 2 & 8 & 6 \\ 2 & 6 & 8 \end{bmatrix}.$$

(b) Find Choleski's method, the inverse of matrix:

$$A = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 5 & 15 \\ 6 & 15 & 46 \end{bmatrix}$$

(c) Find the characteristic equation and eigen value of the matrix :

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

Unit—III

3. (a) The values of x and y are given as below:

x	у
5	12
6	13
9	14
11	16

Find the value of y when x = 10.

(b) Estimate the sale for 1966 using the following table :

Year	Sale (in thousands)
1931	12
1941	15
1951	20
1961	27
1971	39
1981	52

(c) Given \log_{10} 654 = 2.8156, \log_{10} 658 = 2.8182, \log_{10} 659 = 2.8189, \log_{10} 661 = 2.8202. Find \log_{10} 656 using Newton divided difference interpolation formula.

Unit—IV

- 4. (a) Calculate the approximate value of $\int_{0}^{\frac{\pi}{2}} \sin x \, dx$ by Simpson's 1/3 rule, using 11 ordinates.
 - (b) Explain Newton-Cote's formula.

[4] E-3904

(c) Explain Weddle's rule taking 12th interval with suitable example.

Unit-V

- 5. (a) Given $\frac{dy}{dx} = 1 + xy$ with the initial condition that y = 1 when x = 0. Compute y = 0.1 correct to four decimal places by using Taylor's series method.
 - (b) Solve the equation $\frac{dy}{dx} = x + y$, with initial condition y = 0 = 1 by Runge-Kutta's rule, from x = 0 to x = 0.4 with h = 0.1.
 - (c) Use modified Euler's method to compute y for x = 0.05. Give that $\frac{dy}{dx} = x + y$ with initial conditions $x_0 = 0$; $y_0 = 1$ result correct upto three decimal places.