E-3919

B. C. A. (Part III) EXAMINATION, 2021 (Old Course)

Paper First

CALCULUS AND GEOMETRY

(301)

Time : Three Hours]
[Maximum Marks : 50
Note : Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Let $f \in \mathrm{R}[a, b]$ and let m, M be bounds of f on $[a, b]$. Then :

$$
\begin{aligned}
& m(b-a) \leq \int_{a}^{b} f(x) d x \leq \mathrm{M}(b-a) \text { if } b \geq a \\
& m(b-a) \geq \int_{a}^{b} f(x) d x \geq \mathrm{M}(b-a) \text { if } a \geq b
\end{aligned}
$$

(b) State and prove fundamental theorem of integral calculus.
P. T. O.
(c) Let $f(x)=\sin x \quad$ for $\quad x \in\left[0, \frac{\pi}{2}\right] \quad$ and let $\mathrm{P}=\left\{0, \frac{\pi}{2 n}, \frac{2 \pi}{2 n}, \ldots ., \frac{n \pi}{2 n}\right\}$ be the partition of $\left[0, \frac{\pi}{2}\right]$.

Compute $\mathrm{U}(\mathrm{P}, f)$ and $\mathrm{L}(\mathrm{P}, f)$. Hence prove that :

$$
f \in \mathrm{R}\left[0, \frac{\pi}{2}\right] .
$$

Unit-II

2. (a) Discuss maxima, minima and saddle point for the function :

$$
f(x, y)=x^{3}-4 x y+2 y^{2} .
$$

(b) Discuss maxima or minima of :

$$
u=\sin x \sin y \sin (x+y) .
$$

(c) Determine maximum and minimum value of the function :

$$
u=x^{2}+y^{2}+z^{2}
$$

under the conditions :

$$
a x^{2}+b y^{2}+c z^{2}=1
$$

and

$$
l x+m y+n z=0 .
$$

Unit-III

3. (a) Test the convergence of integral :

$$
\int_{a}^{\infty} \frac{d x}{x^{n}}
$$

where $a>0$.
(b) Test the convergence of the integral :

$$
\int_{a}^{b} \frac{d x}{(x-a) \sqrt{b-x}} .
$$

(c) Test the convergence of the integral:

$$
\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x
$$

Unit-IV

4. (a) Find the equation of a cone whose vertex is at (α, β, γ) and base curve is :

$$
a x^{2}+b y^{2}=1, z=0
$$

(b) Find the equation of a right circular cone whose vertex is at origin, axis is $x=y=z$ and half vertex angle is 45°.
(c) Find the equation of cylinder whose generator line is parallel to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and passes through the curve $x^{2}+y^{2}=16, z=0$.
P. T. 0.

Unit-V

5. (a) Show that the condition that the straight line $\frac{l}{r}=\mathrm{A} \cos \theta+\mathrm{B} \sin \theta$ touches the conic $\frac{l}{r}=1+e \cos \theta$ is $(\mathrm{A}-e)^{2}+\mathrm{B}^{2}=1$.
(b) Convert $(x-2)^{2}+(y-3)^{2}=13$ to polar form.
(c) Convert the equation of straight line $y=m x+c$ into polar form.
