Roll No. \qquad

F-3969

B. C. A. (Part III) Examination, 2022

(Old Course)

Paper First

(Calculus and Geometry)

Time : Three Hours]
[Maximum Marks:50

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit - I

1. (a) Let $f(x)=x$, on $[0,1]$, then show that f is R integrable on $[0,1]$ and $\int_{0}^{1} f(x) d x=\frac{1}{2}$
(b) If $f \in R[a, b]$, then show that:

$$
m(b-a) \leq \int_{a}^{b} f d x \leq M(b-a)
$$

Where m and M are infimum and supremum of f on [a,b].
(c) If $f \in R[a, b]$, then prove that $|f| \in R[a, b]$ and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$

Unit - II

2. (a) Find the maximum and minimum value of the function $u=x^{3} y^{2}(1-x-y)$
(b) In a plane triangle, find the maximum value of $u=\sin A \cdot \sin B \cdot \sin C$ by Lagrange's method.
(c) Find the maximum and minimum values of function $w=x^{2}+y^{2}+z^{2}$, given that

$$
a x^{2}+b y^{2}+c z^{2}=1
$$

Unit - III
3. (a) Prove that $\int_{0}^{1} \frac{d x}{\sqrt{x(1-x)}}$ converges.
(b) Discuss the convergence of the following improper integral: $I=\int_{0}^{2} \frac{\log x}{\sqrt{2-x}} d x$
(c) Test the convergence of $\int_{a}^{\infty} \frac{e^{-x} \cos x}{x^{2}} d x$, where $a>1$.

Unit - IV

4. (a) Find the equation of the right - circular cone whose vertex is the origin, axis is the z-axis and semi vertical angle is \propto.
(b) Find the equation of the cone whose vertex is $(0,0,3)$ and base is the circle

$$
x^{2}+y^{2}=4, z=0
$$

(c) Find the equation of right - circular cylinder whose guiding circle is

$$
x^{2}+y^{2}+z^{2}=9 ; x-y+z=3
$$

Unit - V

5. (a) Explain the relation between Cartesian and Polar coordinates.
(b) Show that the two conics $\frac{l_{1}}{r}=1+e_{1} \cos \theta$ and $\frac{l_{2}}{r}=1+e_{2} \cos (\theta-\alpha)$ will touch one another if:
$l_{1}^{2}\left(1-e_{2}^{2}\right)+l_{2}^{2}\left(1-e_{1}^{2}\right)=2 l_{1} l_{2}\left(1-e_{1} e_{2} \cos \alpha\right)$
(c) If PSP' and QSQ' are two perpendicular focal chords of a conic, then show that
$\frac{1}{P S \cdot S P^{1}}+\frac{1}{S Q \cdot S Q^{1}}$ is constant.
