Roll No $\qquad$

## F-3970

## B.C.A. (Part - III) Examination, 2022

(Old Course)
Paper Second
Differential Equation and Fourier Series
(301)

Time : Three Hours]
[Maximum Marks:50

Note: All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks. Only simple calculator is allowed, not scientific calculator.

## Unit - I

1. (a) Solve: $\left(x^{2}-y x^{2}\right) d y+\left(y^{2}+x y^{2}\right) d x=0$
(b) Solve: $(p x-y)(x-y p)=2 p$
(c) Solve:

$$
\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0
$$

Unit - II
2. (a) Find the orthogonal trajectories of the family of curves $y=a x^{2}$
(b) Solve: $\left(D^{2}-4\right) y=x^{2}$
(c) Solve: $\left(x^{3}-x\right) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+n^{2} x^{3} y=0$

## Unit - III

3. (a) Obtain the partial differential equation by eliminating the arbitrary constant $f$ :

$$
z=f\left(x^{2}-y^{2}\right)
$$

(b) Solve: $x^{2} p+y^{2} q=z^{2}$
(c) Solve the partial differential equation by Charpit's method: $\left(p^{2}+q^{2}\right) y=q z$

## Unit - IV

4. (a) Find the Fourier Series of the function
$f(x)=x^{2},-\pi<x<\pi$
Hence, deduce that
$\frac{\pi^{2}}{12}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots \ldots$.
(b) If a function $f$ is bounded and integrable on the interval $[-\pi, \pi]$ and if $a_{n}, b_{n}$ are its fourier coefficients, then prove that the series $\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$ converges.
(c) Find the Fourier Series for the function, $f(x)$, given by

$$
\begin{aligned}
& f(x)=\left\{\begin{aligned}
-b, & -\pi<x<0 \\
b, & 0<x<\pi
\end{aligned}\right. \text { and } \\
& f(x+2 \pi)=f(x)
\end{aligned}
$$

## Unit - V

5. (a) With the reference of Gibb's phenomenon describe functional approximation of square wave using 5 harmonies.
(b) Find the Fourier Series solution to the differential equation

$$
y^{\prime \prime}+2 y=3 x
$$

with the boundary conditions

$$
y(0)=y(1)=0
$$

(c) Explain pointwise convergence with reference to Fourier Series.

