Roll No \qquad Total Printed Pages - 7

F-3349

B. A. (Part - III) Examination, 2022 (Old/New Course) MATHEMATICS PAPER FIRST
(Analysis)

Time : Three Hours]
[Maximum Marks:50

नोट : प्रत्येक प्रश्न से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note : Attempt any two parts of each question. All questions carry equal marks.

इकाई-1/Unit-1

1. (a) माना कि $\sum C_{n}$ अभिसरण करती है तथा

$$
f(x)=\sum_{n=0}^{\infty} C_{n} x^{n} . \quad(-1<x<1)
$$

तब दर्शाइए कि

$$
\lim _{x \rightarrow 1} f(x)=\sum_{n=0}^{\infty} C_{n} .
$$

Suppose the series $\sum C_{n}$ converges and

$$
f(x)=\sum_{n=0}^{\infty} C_{n} x^{n} . \quad(-1<x<1)
$$

then show that

$$
\lim _{x \rightarrow 1} f(x)=\sum_{n=0}^{\infty} C n .
$$

(b) फलन

$$
f(x, y)=x^{2} y^{2}+\sin x+\cos y
$$

के लिए यंग प्रमेय का सत्यापन मूल बिन्दु पर कीजिए।

Verify the Young's theorem at origin for the function

$$
f(x, y)=x^{2} y^{2}+\sin x+\cos y
$$

(c) फलन $f(x)$ के लिए अन्तराल $(-\pi, \pi)$ में फूरियर श्रेणी ज्ञात कीजिए, जहाँ

$$
f(x)=\left\{\begin{array}{cll}
\cos x & , & 0 \leq x \leq \pi \\
-\cos x & , & -\pi \leq x<0
\end{array}\right.
$$

Find the Fourier series of the function $f(x)$ in the interval $(-\pi, \pi)$ where

$$
f(x)=\left\{\begin{array}{cll}
\cos x & , & 0 \leq x \leq \pi \\
-\cos x & , & -\pi \leq x<0
\end{array}\right.
$$

इकाई-2 / Unit-2

2. (a) मान लो $f:[a, b] \rightarrow R,[a, b]$ पर एक परिबद्ध फलन है। तब सिद्ध कीजिए कि f, R - समाकलनीय है यदि और केवल यदि प्रत्येक $\in>0$ के लिए, $[a, b]$ के एक विभाजन P का अस्तित्व इस प्रकार है कि

$$
\bigcup(P, f)-L(P, f)<E
$$

Let $f:[a, b] \rightarrow R$, be a bounded function on [a, b] , then prove that $f \in R[a, b]$ if and only if for every $\in>0$, there exists a partition p of $[a$, b] such that,

$$
\bigcup(P, f)-L(P, f)<\epsilon
$$

(b) बीटा फलन

$$
\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

के अभिसरण के लिए व्याख्या कीजिए।
Discuss the convergence of Beta Function

$$
\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

(c) दर्शाइए कि

$$
\begin{aligned}
& \int_{0}^{1} \frac{x^{\alpha}-1}{\log x} d x=\log (1+\alpha) \\
& \qquad(\alpha>-1)
\end{aligned}
$$

Show that,
$\int_{0}^{1} \frac{x^{\alpha}-1}{\log x} d x=\log (1+\alpha)$

$$
(\alpha>-1)
$$

इकाई - 3 / Unit - 3

3. (a) दर्शाइये कि फलन
$u=\sin x \cdot \cos h y+2 \cos x \cdot \sin h y+x^{2}-y^{2}+4 x y$
एक हार्मोनिक फलन है तथा संगत विश्लेषिक फलन $f(z)$
$=u+i v$ का निर्धारण कीजिए।
Show that the function
$u=\sin x \cdot \cos h y+2 \cos x \cdot \sin h y+x^{2}-y^{2}+4 x y$
is a Harmonic function and determine the corresponding analytic function $f(z)=u+i v$.
(b) दर्शाइये कि द्विरेखीय रूपान्तरण के अन्तगर्त वज्रानुपात निश्चर होते हैं।

Show that cross-ratios are invariant under a Bilinear Transformation.
(c) किसी फलन $f(z)$ विश्लेषिक होने के लिए कॉशी-

रीमान समीकरण को व्युत्पन्न कीजिए।
Derive Cauchy-Riemann equation for a function $f(z)$ to be analytic.

इकाई - 4 / Unit - 4

4. (a) सिद्ध कीजिए कि किसी दूरीक समष्टि में परिमित संख्या में विवृत्त समुच्चयों का सर्वनिष्ठ विवृत्त होता है।

Prove that in a metric space, the intersection of a finite number of open sets is open.
(b) सिद्ध कीजिए कि ऐसा कोई पूर्णांक r विद्यमान नहीं है जिसके लिए $\sqrt{r+1}+\sqrt{r-1}$ एक परिमेय संख्या हो। Prove that there exists no integer for which $\sqrt{r+1}+\sqrt{r-1}$ is a rational number.
(c) सिद्ध कीजिए कि परिमेय संख्याओं का समुच्चय Q पूर्ण क्रमित क्षेत्र नहीं होता है।

Prove that the set of rational numbers Q is not order complete field.

इकाई - 5 / Unit - 5

5. (a) सिद्ध कीजिए कि प्रत्येक दूरीक समष्टि प्रथम गणनीय होता है।

Prove that every metric space is first countable.
(b) मान लो (x, d) तथा $(\mathrm{y}, \mathrm{\rho})$ दो दूरीक समष्टियाँ और $f: x \rightarrow y$ एक फलन है। तब सिद्ध कीजिए कि f
संतत है यदि और केवल यदि $f(\bar{A}) \subseteq \overline{f(A)}, x$ के प्रत्येक उपसमुच्चय A के लिए।

Let (x, d) and (y, s) be two metric spaces and $f: x \rightarrow y$ be a function. Then prove that f is continuous iff $f(\bar{A}) \subseteq \overline{f(A)}$, for every subset A of x.
(c) सिद्ध कीजिए कि प्रत्येक सम्पूर्णतया परिबद्ध दूरीक समष्टि परिबद्ध होता है।

Prove that every totally bounded metric space is bounded.

