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B. A. (Part - III) Examination, 2022
(Old/New Course)

MATHEMATICS
PAPER FIRST

(Analysis)

Time : Three Hours] [Maximum Marks:50

 


Note :Attempt any two parts of each question. All
questions carry equal marks.
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(b) 

2 2f(x, y) = x  y  + sin x + cos y
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Verify the Young's theorem at origin for the function

2 2f(x, y) = x  y  + sin x + cos y

(c) f (x)  - ,  
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Find the Fourier series of the function f (x) in
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Let : [ , ] ,f a b R be a bounded function

on [a, b] , then prove that [ , ]f R a b  if and only

if for every 0 , there exists a partition p of [a,
b] such that,
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Discuss the convergence of Beta Function
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Show that,
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3. (a) 
2 2sin .cos 2cos .sin 4u x hy x hy x y xy

 f (z)
= u + iv 

Show that the function
2 2sin .cos 2cos .sin 4u x hy x hy x y xy

is a Harmonic function and determine the
corresponding analytic function f (z) = u + iv.

(b) 


Show that cross-ratios are invariant under a
Bilinear Transformation.

(c)  ( )f z  
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Derive Cauchy-Riemann equation for a func-
tion  ( )f z   to be analytic.

4 / Unit - 4

4. (a) 


Prove that in a metric space, the intersection of
a finite number of open sets is open.

(b) r 
 1 1r r 

Prove that there exists no integer for which

1 1r r  is a rational number..

(c) Q


Prove that the set of rational numbers Q is not
order complete field.
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5. (a) 


Prove that every metric space is first count-
able.

(b) (x, d) (y,) 

:f x y f

 ( ) ( )f A f A  x
A 

Let (x, d) and (y,) be two metric spaces and
:f x y  be a function. Then prove that f is

continuous iff ( ) ( )f A f A for every sub-
set A of x .

(c) 


Prove that every totally bounded metric space
is bounded.


