\qquad

F-3350

B. A. (Part - III) Examination, 2022

(Old/New Course)
Mathematics
Paper Second
(Abstract Algebra)

Time : Three Hours]
[Maximum Marks:50

नोट: प्रत्येक प्रश्न से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note: Attempt any two parts of each question. All questions carry equal marks.

इकाई -l/Unit-I

1. (A) किसी समूह के केंन्द्र की परिभाषा दीजिए।सिद्ध कीजिए कि यदि G कोटि P^{n} का एक समूह है जहाँ P एक अभाज्य संख्या है तथा n एक धन पूर्णांक है, तब समूह G अवश्य

ही एक अतुच्छ केंद्र रखता है।
Define centre of a Group. Prove that if G is a group of order P^{n}, where P is a prime number and n is a positive integer, then G will have a non-Trivial centre.
(B) द्वितीय सिलो प्रमेय लिखिये और सिद्ध कीजिए। State and prove second theorem of Sylow.
(C) यदि G एक समूह है f, G का एक स्वाकारिता है, N, G का एक प्रसामान्य उपसमूह है, N, G तब सिद्ध, कीजिए कि $f(\mathrm{~N})$ का एक प्रसामान्य उपसमूह हैं।
If G be a group, f is an automorphismin $G, \mathrm{~N}$ is a normal subgroup of G, then prove that $f(\mathrm{~N})$ is a normal subgroup of G.

इकाई -II/Unit - II
2. (A) सिद्ध कीजिए कि एक इकाई सहित क्रम विनिमेय वलय एक क्षेत्र होता है यदि और केवल यदि उसकी कोई उचित गुणजावली नहीं हैं।

Prove that a commutative ring with identity is a field if and only if it has no proper ideals.
(B) दर्शाइये कि क्षेत्र F पर बहुपद प्रान्त $\mathrm{F}(\mathrm{x})$ एक क्षेत्र नहीं है।

Show that the polynomial domain $F(x)$ over the field F is not a field.
(C) क्षेत्र ($\mathrm{Q},+, \cdot$) में बहुपदों
$f(x)=x^{4}+x^{3}+2 x^{2}+x+1$ तथा $g(x)=x^{3}-1$ का महत्तम उभयनिष्ठ भाजक ज्ञात कीजिए तथा इसे दोनों बहुपदों के एक रैखिक संयोजन में व्यक्त कीजिए। Find the g.c.d of the polynomial.
$f(x)=x^{4}+x^{3}+2 x^{2}+x+1$ and
$g(x)=x^{3}-1$ over the field ($\mathrm{Q},+;$) and express
it as a linear combination of the two polynomials.

इकाई -III/Unit - III

3. (A) दर्शाइये कि किसी सदिश समष्टि $V(F)$ के एक अरिक्त उपसमुच्चय w सदिश उपसमष्टि होगी यदि और केवल यदि, $a \in \mathrm{~F}$ तथा $\alpha, \beta \in w \Rightarrow a \alpha+\beta \in w$

Show that a non - empty subset w of a vector space $\mathrm{V}(\mathrm{F})$ is a subspace iff, $a \in \mathrm{~F}$ and $\alpha, \beta \in w \Rightarrow a \alpha+\beta \in w$
(B) किसी सदिश समष्टि के आधार की परिभाषा दीजिए। दर्शाइये कि सदिश
$\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1), \alpha_{3}=(0,-3,2) \quad V_{3}(R)$ का आधार है।

Define basis of a vector space. Show that the vectors $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1), \alpha_{3}=(0,-3,2)$ form a basis of $V_{3}(R)$.
(C) सिद्ध कीजिए कि किसी सदिश समष्टि $V(F)$ के किसी समुच्चय S का एकघाती विस्वृति $L(S), S$ द्वारा जनित V की एक उपसमष्टि होती है, अर्थात् $\mathrm{L}(\mathrm{S})=[\mathrm{S}]$

Prove that the linear span $L(S)$ of any subset S of a vector space $V(F)$ is a subspace of V generated by S, i.e. L(S) = [S].

इकाई -IV/Unit - IV

4. (A) सिद्ध कीजिए कि किसी समाकारिता की अष्टि (कर्नेल) सदिश समष्टि $V(F)$ की सदिश उपसमष्टि होती है।

Prove that the Kernal of a homomorphism is a vector subspace of the vector space V (F).
(B) निम्नाकित द्विघाती समघात को विहित रूप में व्यक्त कीजिए तथा इसकी जाति, सूचकांक एवं चिन्हिका ज्ञात कीजिए :
$9=x^{2}-2 y^{2}+3 z^{2}-4 y z+6 z x$

Reduce the quadratic form :
$9=x^{2}-2 y^{2}+3 z^{2}-4 y z+6 z x$ into canonical form and find its rank, index and signature.
(C) यदि T, R^{3} पर रैखिक संकारक है जो-
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3},-x_{1}-x_{2}-4 x_{3}, 2 x_{1}-x_{3}\right)$
से परिभाषित है। आधार $B=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ जहाँ
$\alpha_{1}=(1,1,1), \alpha_{2}=(0,1,1), \alpha_{3}=(1,0,1)$ है के सापेक्ष T का आव्यूह ज्ञात कीजिए।

If T be a linear operator on R^{3} defined as:
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3},-x_{1}-x_{2}-4 x_{3}, 2 x_{1}-x_{3}\right)$,
find the matrix of T with respect to basis
$B=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, where $\alpha_{1}=(1,1,1), \alpha_{2}=(0,1,1)$,
$\alpha_{3}=(1,0,1)$

इकाई -V/Unit - V

5. (A) श्वार्ज असमिका लिखिए एवं सिद्ध कीजिए।

State and prove Schwartz's inequality.
(B) यदि α और β अन्तर गुणन समष्टि $\mathrm{V}(\mathrm{F})$ के सदिश हो तो सिद्ध कीजिए कि :
$\|\alpha+\beta\|^{2}+\|\alpha-\beta\|^{2}=2\|\alpha\|^{2}+2\|\beta\|^{2}$
परिणाम की ज्यामितीय व्याख्या कीजिए।
(B) If α and β are vectors in an inner product space $V(F)$, then prove that :
$\|\alpha+\beta\|^{2}+\|\alpha-\beta\|^{2}=2\|\alpha\|^{2}+2\|\beta\|^{2}$
Interpret the result geometrically.
(C) यदि V एक आंतर गुणन समष्टि है और $\alpha, \beta \in V$, तब दर्शाइये कि : $\alpha=\beta \Leftrightarrow(\alpha, \gamma)=(\beta, \gamma) \forall \gamma \in V$.

If V be an inner product space and $\alpha, \beta \in V$, then show that : $\alpha=\beta \Leftrightarrow(\alpha, \gamma)=(\beta, \gamma) \quad \forall \gamma \in V$.

