Roll No.		Total Printed Pages - 6		ही एक अतुच्छ केंद्र रखता है।
F - 3350			Define centre of a Group. Prove that if G is a group of order P^n , where P is a prime number and n is a positive integer, then G will have a non - Trivial centre.	
B. A. (Part - III) Examination, 2022			(B)	द्वितीय सिलो प्रमेय लिखिये और सिद्ध कीजिए।
(Old/New Course)				State and prove second theorem of Sylow.
Mathematics Paper Second (Abstract Algebra)		(C)	यदि G - एक समूह है f , G -का एक स्वाकारिता है, N, G - का एक प्रसामान्य उपसमूह है, N, G -तब सिद्ध, कीजिए कि f (N) का एक प्रसामान्य उपसमह हैं।	
Time : Three Hours] [Maximum Marks:50			If G be a group, f is an automorphism in G , N is a normal subgroup of G , then prove that f (N) is a normal subgroup of G .	
୩୦:	अंक समान हैं।	פרו סווטע ו אואו אפאו ס		इकाई -II/Unit - II
Note:	Attempt any two parts of each question. All questions carry equal marks.		2. (A)	सिद्ध कीजिए कि एक इकाई सहित क्रम विनिमेय वलय एक क्षेत्र होता है यदि और केवल यदि उसकी कोई
	इकाई -I/Uni	it - I		उचित गुणजावली नहीं हैं।

[2]

Prove that a commutative ring with identity is a

field if and only if it has no proper ideals.

(B) दर्शाइये कि क्षेत्र F पर बहुपद प्रान्त F(x) एक क्षेत्र नहीं है।

F - 3350

 (A) किसी समूह के केंन्द्र की परिभाषा दीजिए। सिद्ध कीजिए कि यदि G कोटि Pⁿ का एक समूह है जहाँ P एक अभाज्य संख्या है तथा n एक धन पूर्णांक है, तब समूह G अवश्य [3]

Show that the polynomial domain F(x) over the field F is not a field.

(C) क्षेत्र (Q,+,•) में बहुपदों

 $f(x) = x^4 + x^3 + 2x^2 + x + 1$ तथा $g(x) = x^3 - 1$ का महत्तम उभयनिष्ठ भाजक ज्ञात कीजिए तथा इसे दोनों बहुपदों के एक रैखिक संयोजन में व्यक्त कीजिए। Find the g.c.d of the polynomial.

$$f(x) = x^4 + x^3 + 2x^2 + x + 1$$
 and

 $g(x) = x^3 - 1$ over the field (Q,+,·) and express it as a linear combination of the two polynomials.

इकाई -III/Unit - III

3. (A) दर्शाइये कि किसी संदिश समष्टि V(F) के एक अरिक्त उपसमुच्चय w संदिश उपसमष्टि होगी यदि और केवल यदि, $a \in F$ तथा $\alpha, \beta \in w \Longrightarrow a\alpha + \beta \in w$

> Show that a non - empty subset w of a vector space V(F) is a subspace iff, $a \in F$ and $\alpha, \beta \in w \Longrightarrow a\alpha + \beta \in w$

(B) किसी सदिश समष्टि के आधार की परिभाषा दीजिए।
 दर्शाइये कि सदिश

[4]

 $\alpha_1 = (1,0,-1), \alpha_2 = (1,2,1), \alpha_3 = (0,-3,2) V_3(R)$ का आधार है।

Define basis of a vector space. Show that the vectors $\alpha_1 = (1,0,-1), \alpha_2 = (1,2,1), \alpha_3 = (0,-3,2)$ form a basis of $V_3(R)$.

(C) सिद्ध कीजिए कि किसी सदिश समष्टि V(F) के किसी समुच्चय S का एकघाती विस्वृति L(S), S द्वारा जनित V की एक उपसमष्टि होती है, अर्थात् L(S) = [S]

Prove that the linear span L(S) of any subset S of a vector space V(F) is a subspace of V generated by S, i.e. L(S) = [S].

इकाई -IV/Unit - IV

 (A) सिद्ध कीजिए कि किसी समाकारिता की अष्टि (कर्नेल) सदिश समष्टि V (F) की सदिश उपसमष्टि होती है।

Prove that the Kernal of a homomorphism is a vector subspace of the vector space V(F).

(B) निम्नाकिंत द्विघाती समघात को विहित रूप में व्यक्त कीजिए तथा इसकी जाति, सूचकांक एवं चिन्हिका ज्ञात कीजिए :

 $9 = x^2 - 2y^2 + 3z^2 - 4yz + 6zx$

Reduce the quadratic form :

 $9 = x^2 - 2y^2 + 3z^2 - 4yz + 6zx$ into canonical form and find its rank, index and signature.

(C) यदि T, R³ पर रैखिक संकारक है जो-

$$T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, -x_1 - x_2 - 4x_3, 2x_1 - x_3)$$

से परिभाषित है। आधार $B = \{\alpha_1, \alpha_2, \alpha_3\}$ जहाँ
 $\alpha_1 = (1, 1, 1), \alpha_2 = (0, 1, 1), \alpha_3 = (1, 0, 1)$ है के सापेक्ष T
का आव्यूह ज्ञात कीजिए।

If T be a linear operator on R³ defined as:

 $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, -x_1 - x_2 - 4x_3, 2x_1 - x_3),$ find the matrix of T with respect to basis $B = \{\alpha_1, \alpha_2, \alpha_3\}, \text{ where } \alpha_1 = (1, 1, 1), \alpha_2 = (0, 1, 1),$ $\alpha_3 = (1, 0, 1)$

इकाई -V/Unit - V

5. (A) श्वार्ज असमिका लिखिए एवं सिद्ध कीजिए।

State and prove Schwartz's inequality.

(B) यदि α और β अन्तर गुणन समष्टि V(F) के संदिश हो तो सिद्ध कीजिए कि :

[6]

 $\|\alpha + \beta\|^{2} + \|\alpha - \beta\|^{2} = 2\|\alpha\|^{2} + 2\|\beta\|^{2}$

परिणाम की ज्यामितीय व्याख्या कीजिए।

(B) If α and β are vectors in an inner product space V(F), then prove that :

$$\|\alpha + \beta\|^{2} + \|\alpha - \beta\|^{2} = 2\|\alpha\|^{2} + 2\|\beta\|^{2}$$

Interpret the result geometrically.

(C) यदि V एक आंतर गुणन समष्टि है और $\alpha, \beta \in V$, तब दर्शाइये कि : $\alpha = \beta \Leftrightarrow (\alpha, \gamma) = (\beta, \gamma) \nleftrightarrow \gamma \in V$.

If V be an inner product space and $\alpha, \beta \in V$, then show that : $\alpha = \beta \Leftrightarrow (\alpha, \gamma) = (\beta, \gamma) \quad \forall \gamma \in V$.