Roll No \qquad

F-3147

B. A. (Part - I) Examination, 2022

(New Course)
MATHEMATICS

PAPER THIRD

(Vector Analysis and Geometry)

Time : Three Hours]
[Maximum Marks:50

नोट : प्रत्येक प्रश्न से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note : Attempt any two parts of each question. All questions carry equal marks.

इकाई-1/Unit-1

1. (a) $\vec{a} .(\vec{b} \times \vec{c})$ ज्ञात कीजिए जहाँ,

$$
\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k},
$$

$\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$
Find $\vec{a} .(\vec{b} \times \vec{c})$ where,
$\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \quad \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$,
$\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$
(b) सिद्ध कीजिए कि:
$\vec{a} \times \vec{a}+\vec{b} \times \vec{b}+\vec{c} \times \vec{c}^{\prime}=\overrightarrow{0}$
जहाँ $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ क्रमशः $\vec{a}, \vec{b}, \vec{c}$ के व्युत्क्रम सदिश हैं।
Prove that:
$\vec{a} \times \vec{a}+\vec{b} \times \vec{b}^{\prime}+\vec{c} \times \vec{c}^{\prime}=\overrightarrow{0}$
where $\overrightarrow{a^{\prime}}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are respectively reciprocal vectors of $\vec{a}, \vec{b}, \vec{c}$.
(c) दर्शाइये कि निम्न सदिश परिनालिकीय है :
$\vec{F}=y z \hat{i}+z x \hat{j}+x y \hat{k}$

Show that following vector is solenoidal:
$\vec{F}=y z \hat{i}+z x \hat{j}+x y \hat{k}$

इकाई - 2 / Unit - 2

2. (a) यदि $\vec{r}=\left(t-t^{2}\right) \hat{i}+2 t^{2} \hat{j}-3 \hat{k}$ तो ज्ञात कीजिए :
$\int_{1}^{2} \vec{r} d t$
If $\vec{r}=\left(t-t^{2}\right) \hat{i}+2 t^{2} \hat{j}-3 \hat{k}$ then find that:
$\int_{1}^{2} \vec{r} d t$
(b) यदि S , गोले $x^{2}+y^{2}+z^{2}=9$ का पृष्ठ है, तो गाउस के डाइवर्जेन्स प्रमेय से सिद्ध कीजिए कि
$\iint_{S} \vec{r} \cdot \hat{n} d S=108 \pi$
If S is surface of the sphere $x^{2}+y^{2}+z^{2}=9$, then using Gauss's divergence theorem, prove that:
$\iint_{S} \vec{r} \cdot \hat{n} d S=108 \pi$
(c) ग्रीन-प्रमेय से निम्न समाकल का मान ज्ञात कीजिए जहाँ C एक आयत है, जिसके शीर्ष
$(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$ हैं।
Using Green's theorem, find value of following integral, where C is a rectangle whose vertices
are $(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$

इकाई-3/Unit-3

3. (a) शांकव का अनुरेखण कीजिए :
$21 x^{2}-6 x y+29 y^{2}+6 x-58 y-151=0$
Trace the following conic:
$21 x^{2}-6 x y+29 y^{2}+6 x-58 y-151=0$
(b) शांकव $x^{2}+2 y^{2}=2$ से संनाभि शांकव का समीकरण ज्ञात कीजिए जो बिन्दु $(1,1)$ से होकर जाता है।

Find equation of confocal conics to conic $x^{2}+$ $2 y^{2}=2$ and passes through point $(1,1)$.
(c) सिद्ध कीजिए कि किसी शांकव में लम्बरूप नाभिगत जीवाओं के व्युत्क्रमों का योग अचर होता है।

Prove that sum of reciprocals of perpendicular focal chords in any conic is constant.

इकाई - 4 / Unit - 4

4. (a) मूल बिन्दु और बिन्दुओं $(a, 0,0),(0, b, 0)$ और $(0,0, c)$ से होकर जाने वाले गोले का समीकरण ज्ञात कीजिए।

Find equation of sphere passing through origin and points $(a, 0,0),(0, b, 0) \&(0,0, c)$.
(b) उस शंकु का समीकरण ज्ञात कीजिए जिसका शीर्ष (0,0 , 3) और आधार वक्र, वृत्त $x^{2}+y^{2}=4, z=0$. है।

Find equation of cone whose vertex is $(0,0,3)$ and base curve is circle $x^{2}+y^{2}=4, z=0$.
(c) उस बेलन का समीकरण ज्ञात कीजिए जिसके जनक, रेखा $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ के समान्तर है, तथा आधार वक्र $x^{2}+2 y^{2}=1, z=0$ है।

Find equation of cylinder whose generator is parallel to line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and base curve is $x^{2}+2 y^{2}=1, z=0$.

इकाई-5/Unit-5

5. (a) पृष्ठ $x^{2}+y^{2}-z^{2}=1$ का वर्णन व अनुरेखन कीजिए।

Describe and trace the surface $x^{2}+y^{2}-z^{2}=1$.
(b) परवलयज $\frac{x^{2}}{2}-\frac{y^{2}}{3}=z$ के बिन्दु $(4,3,5)$ पर अभिलम्ब का समीकरण ज्ञात कीजिए।

Find equation of normal at point $(4,3,5)$ of paraboloid $\frac{x^{2}}{2}-\frac{y^{2}}{3}=z$.
(c) अतिपरवलयज $\frac{x^{2}}{1}+\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$ वे बिन्दु $(1,2,-3)$ से होकर जाने वाले जनकों के समीकरण ज्ञात कीजिए।

Find the equation of generating lines of the hy-
perboloid $\frac{x^{2}}{1}+\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$ which pass
through the point ($1,2,-3$)

