Roll No. \qquad

F-3352

B.A. (Part - III) Examination, 2022
(Old/New Course)
Mathematics
(Optional)
Paper Third (II)
(Discrete Mathematics)

Time : Three Hours]
[Maximum Marks:50

नोट : प्रत्येक प्रश्न से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान है।

Note : Attempt any two parts of each question. All questions carry equal marks.

इकाई -I/Unit - I

1. (A) $x_{1} \leq 4, x_{2} \leq 5$ तथा $x_{3} \leq 6$ सहित $x_{1}+x_{2}+x_{3}=13$ कितने हल रखता है, जहाँ x_{1}, x_{2}, x_{3} ॠणेत्तर पूर्णांक हैं।

How many solutions does $x_{1}+x_{2}+x_{3}=13$ have where x_{1}, x_{2}, x_{3} are non negative integers with
$x_{1} \leq 4, x_{2} \leq 5$ and $x_{3} \leq 6$.
(B) भाषा $L=\left\{a^{i} b^{j} \mid i, j \geq 1, i \neq j\right\}$ के लिए व्याकरण की संरचना कीजिए।

Construct grammar for the language
$L=\left\{a^{i} b^{j} \mid i_{1} j \geq 1, i \neq j\right\}$.
(C) 75% मामलों में A सत्य बोलता है और 80% मामलों में B सत्य बोलता है। कितने प्रतिशत मामलों में वे एक ही तथ्य को कहने में एक दूसरे का विरोध करेंगे?

A speaks the truth in 75% cases and B speaks the truth in 80% of the cases. In what percentage of cases are they likely to contradict each other in stating the same fact?

इकाई -II/Unit - II

2. (A) निम्नलिखित पदों को परिभाषित कीजिए -
(i) हैस आरेख
(ii) श्रृंखला एवं प्रतिश्रृंखला

Define the following terms :
(i) Hasse diagram
(ii) Chain and antichain
(B) यदि आलेख $G=(V, E), V=\left\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right\}$,
$E=\left\{\left(V_{1}, V_{2}\right),\left(V_{1}, V_{5}\right),\left(V_{2}, V_{3}\right),\left(V_{2}, V_{4}\right),\left(V_{3}, V_{4}\right),\left(V_{3}, V_{5}\right),\left(V_{4}, V_{5}\right)\right\}$,
से परिभाषित है, तो इस आलेख G का आसन्नता आव्यूह एवं आपतन आव्यूह ज्ञात कीजिए।

If a graph $G=(V, E)$ is defined by
$V=\left\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right\}$,
$E=\left\{\left(V_{1}, V_{2}\right),\left(V_{1}, V_{5}\right),\left(V_{2}, V_{3}\right),\left(V_{2}, V_{4}\right),\left(V_{3}, V_{4}\right),\left(V_{3}, V_{5}\right),\left(V_{4}, V_{5}\right)\right\}$,
then, find the adjacency matrix and incidence matrix of the graph G .
(C) किसी समतलीय आलेख के लिए यूलर सूत्र लिखिए एवं सिद्ध कीजिए।

State and prove Euler's formula for plannar graph.

इकाई -III/Unit - III

3. (A) पांम्पिंग प्रमेयिका का कथन लिखकर सिद्ध कीजिए। State and prove Pumping lemma.
(B) दिए गए जनक फलन के लिए विविक्त संख्यात्मक फलन का निर्धारण कीजिए। $A(z)=\frac{(1+z)^{2}}{(1-z)^{4}}$

Generate discrete numeric function for given
generating function. $A(z)=\frac{(1+z)^{2}}{(1-z)^{4}}$
(C) माना M एक परिमित अवस्था यंत्र है। तब M के सभी अवस्थाओं के समुच्चय S पर K तुल्यता एक तुल्यता संबंध होता है। इसे सिद्ध कीजिए।

Let M be a finite state machine. Then the relation K equivalence on the set S of all states of M is an equivalence relation. Prove it.

इकाई -IV/Unit - IV

4. (A) अंतर समीकरण को हल कीजिए।

$$
4_{r+2}-5 a_{r-1}+6 a_{r}=5^{r}
$$

Solve the difference equation :
$4_{r+2}-5 a_{r-1}+6 a_{r}=5^{r}$
(B) जनक फलन विधि से निम्नलिखित अंतर समीकरण का हल ज्ञात कीजिए- $a_{r+2}-2 a_{r+1}+a_{r}=2^{r}, r \geq 0$
दिया है $a_{0}=2, a_{1}=1$
Solve by the method of generating function, the following recurrence relation.
$a_{r+2}-2 a_{r+1}+a_{r}=2^{r}, r \geq 0$ Given that
$a_{0}=2, a_{1}=1$
(C) सिद्ध कीजिए कि गुणन के अंतर्गत इकाई के n मूलों का समुच्चय एक परिमित आबेली चक्रीय समूह बनाता है।

Show that the set of $\mathrm{n}^{\text {th }}$ roots of unity forms a finite abelian cyclic group under multiplication.

इकाई -V/Unit - V

5. (A) क्रम संबंध \leq बूलीय बीजगणित B में अंशतः क्रम संबंध होता है। सिद्ध कीजिए।

The order relation \leq on Boolean algebra B is a partial order relation. Prove it.
(B) एक बूलीय बीजगणित में सिद्ध कीजिए।
$(a+b) \cdot\left(a^{\prime}+c\right)=(a \cdot c)+\left(a^{\prime} \cdot b\right) \forall a, b, c \in B$
In a Boolean algebra, Prove that -
$(a+b) \cdot\left(a^{\prime}+c\right)=(a \cdot c)+\left(a^{\prime} \cdot b\right) \forall a, b, c \in B$
(C) निम्नलिखित स्विचन परिपथ को सरलीकृत स्विचन परिपथ से प्रतिस्थापित कीजिए।

Find simplified switching circuit of the following switching circuit.

F-3352

